Derivation of Lever Rule

In two-phase region the composition of two phases is different and is NOT the nominal composition of the alloy.

Lever rule is used to find the amount of phases present in only the two-phase regions of binary phase diagrams.

Let's consider an isomorphous system having components A and B.
Say we have to find the amount of two phases at T temperature and for Co .

Draw a horizontal temperature line for T temperature as shown below.

Fig.1
The temperature line ties both liquidus and solidus lines together, that is why it's call tie line.

Note : Tie lines can be only drawn in two-phase coexistence region.

CL = Composition of liquid
CO = Composition of alloy
CS = Composition of solid










Derivation of Lever Rule 

Consider,
MB,total = Total mass of B in system
MB,liquid = Mass os B in liquid
MB,solid = Mass of B in solid
ML = Total mass of the liquid
Mtotal = Total mass of the system

Note : If you are unable to see mathematical expressions given below then kindly refresh the page.

Let's do mass balance for B, as per law of conservation on mass. \[M_{B,total}\;=\;M_{B,liquid}\;+\;M_{B,solid}\] We can find the value of MB,liquid and MB,solid by multiplying ML with the respective compositions CL and CS . Thus equation becomes, \[M_{B,total}\;=\;\left(M_{L}\cdot C_{L}\right)\;+\;\left(M_{L}\cdot C_{S}\right)\] Let's divide both sides with Mtotal thus equation becomes, \[\frac{M_{B,total}}{M_{total}} = \frac{\left (M_{L}\cdot C_{L} \right )}{M_{total}} + \frac{\left (M_{S}\cdot C_{S} \right )}{M_{total}}\] \[\therefore \left (\frac{M_{B,total}}{M_{total}}\right ) = \left (\frac{M_{L}}{M_{total}}\right)\cdot C_{L} + \left (\frac{M_{S}}{M_{total}}\right)\cdot C_{S}\] But we know that \[ \frac{M}{M_{total}}\;=\;C\;=\;Overall\;composition,\] \[\frac{M_{L}}{M_{total}}\;=\;W_{L}\,=\,Weight\;fraction\;in\;liquid,\] \[\frac{M_{S}}{M_{total}}\;=\;W_{S}\,=\,Weight\;fraction\;in\;solid\] therefor the equation becomes \[\left ( C_{O} \right ) = \left (W_{L}\cdot C_{L}\right ) + \left (W_{S}\cdot C_{S}\right )\;........(1)\] But since the system only have two phases ( i.e. solid & liquid ), summation of the weight fractions will be one. \[W_{S}\;+\;W_{L}\;=\;1\] \[\therefore\;W_{L}\;=\;1\;-\;W_{S}\] If we substitute the value of WL in eq-1 then we will get \[\left ( C_{O} \right )\;=\;\left(1\;-\;W_{S}\right)\cdot C_{L}\;+\;\left (W_{S}\cdot C_{S}\right )\] \[\therefore C_{O}\;=\;C_{L}\;-\;W_{S}\cdot C_{L}\;+\;W_{S}\cdot C_{S}\] \[\therefore C_{O}\;=\;C_{L}\;-\;W_{S}\left(C_{L}\;-\;C_{S}\right )\] \[\therefore W_{S}\left(C_{L}\;-\;C_{S}\right )\;=\;C_{L}\;-\;C_{O}\] thus we will get \[\therefore W_{S}\;=\;\frac{C_{L}\;-\;C_{O}}{C_{L}\;-\;C_{S}}\;\;\;\;\;and\;\;\;\;\;W_{L}\;=\;\frac{C_{S}\;-\;C_{O}}{C_{S}\;-\;C_{L}}\]


Numerical

Click on the image to zoom